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Clock arithmetic

» Suppose we have a clock face, but define 12 o’clock as “0” o’clock
— The Europeans and military already do this...
n 9
10 2

* You know that:
— 5 hours after 9 o’clock is 2 o’clock
— 7 hours before 3 o’clock is 8 o’clock
— Specifically:
* 1 hour before 0 o’clock is 11 o’clock
1 hour after 11 o’clock is 0 o’clock
+ This is arithmetic modulo 12
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Outline

* In this lesson, we will:
— Learn the representation of unsigned integers
— Describe how integer addition and subtraction is performed
« This requires the 2’s complement representation
— Use 2’s complement to store negative numbers for signed integers
— Describe the ranges stored by the four integer types
» Both unsigned and signed

& . .
Integer primitive d

int and long

»  We have seen integer data types up to this point:
int
unsigned int
long
unsigned long

» It has been suggested that
— An unsigned integer stores only positive numbers (9, 1, 2, ...)

— A long can store more information than an int

+  We will now see how integers are stored in the computer
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Binary representations Storage
*  We have already described binary numbers » Do we store as many bits as are necessary?
— On the computer, all integers are stored in binary — You could, but this would be exceedingly difficult to manage
— Thus, to store each of these numbers, we must store the
corresponding binary digits (bits): + Instead, each primitive data type has a fixed amount of storage
3 1 2 — 8 bits are defined as 1 byte
42 1le1e1e 6 — All data types are an integral number of bytes
616 1001101000 10 « Usually 1, 2, 4, 8 or 16 bytes
299792458 10001110111100111100001001010 29 + Because we use binary, powers of 2 are very common:

— To store a googol (10'%°), we must store 333 bits: Expoonent Decimal Binary
10010010010011010110100100101100101001100001101111100111... gl ; 1;
01011000010110010011110000100110001001100111000001011111... 2 4 100
10011100010101100111001000000100011100010000100011010011... 2 8 1000
11100101010101011001001000011000010001010100000101110100... 24 16 10000
611116001 2 32 100000

26 64 1

Integér primitive Integer primitivi

unsigned int unsigned short

» Avariable is declared unsigned int is allocated four bytes * Sometimes, you don’t need to store numbers this large
— 4 bytes is 4 x 8 = 32 bits » Variables declared unsigned short are allocated two bytes
— 32 different 1s and @s can be stored — 2bytesis 2 x 8 =16 bits
— The smallest and largest: — 16 different 1s and ©s can be stored

0000000000000 — The smallest and largest:

111111121111112121121311211111111111 0000000000000000
— The smallest represents 0 1111111111111111
— The largest is one less than — The smallest represents 0

1 — The largest is one less than
82 zeros 10000000000000000
— This equals 2%, thus, the largest value that can be stored as an 16 zer05
unsigned intis 2%2-1=4294967295

— This equals 216, thus, the largest value that can be stored as an
« Approximately 4 billion unsigned intis 216 -1=65535
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unsigned long Example
+ Sometimes, you need to store very large numbers + Consider this program: Note:
* Variables declared unsigned long are allocated eight bytes #include <iostream> First, a is upcast to unsigned int
— 8hytesis 8 x 8 = 64 bits before to the ﬁrst_ addition
// Function declarations Then, the result is upcast to

— 64 different 1s and 0s can be stored

int main(); unsigned long before the second addition
— The smallest and largest:

// Function definitions

11111111211121212211211121221121112112112112121212112111121112111111111 int main() {

— The smallest represents 0 unsigned short a{42}; .
p Output
— The largest is one less than unsigned int  b{2075e0}; 300000000
1 unsigned long ¢{299792458};
64 zeros

. std::cout << (a + b + c) << std::endl;
— This equals 2%, thus, the largest value that can be stored as an

unsigned intis 254-1 = 18446744073709551615

return 0;
« This 18 billion billion or 18 quintillion }

Integér primitive (Lé Atypes Integér primitive (l’!t Atypes,

Example Example
* On the stack, an appropriate number of bytes are allocated to each » Each of these variables is then initialized
variable
LS eSS TR E S Er T PSS E T ES T ERE S SRR ES T Ed S EEE TR EE TSt FEE TSR TE TRt FE ST EE R E T T bt T T b ST T b E Rt 0 o 00160011101111001111000010601010000000006000001100101016100011000000600060101010
—————r ————
8 bytes for ¢ 4 bytes for b 2 bytes for a 8 bytes for ¢ 4 bytes for b 2 bytes for a
#include <iostream> #include <iostream>
// Function declarations // Function declarations
int main(); int main();
// Function definitions // Function definitions
int main() { int main() {
unsigned short a{42}; unsigned short a{42};
unsigned int  b{207500}; unsigned int  b{207500}
unsigned long ¢{299792458}; unsigned long ¢{299792458};
std::cout << (a + b + c) << std::endl; std::cout << (a + b + c) << std::endl;
return @; return @;
} }
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Example Wasted space?
* Generally, however, we display the bytes in memory as a column of + If an integer does not use all the bytes, the remaining bits are never-
bytes, the values of which are concatenated the-less allocated until the variable goes out of scope
— In general-purpose computing, this is often not a problem
06000008 o S .
EEEEERED) — This is a critical issue, however, in embedded systems
26908088 + More memory:
#include <iostream> 8 bytes for ¢ ggg?ggg? — Costs more
// Function declarations 11ei1i1e — Uses more power
int main(); 91111606 — Produces more heat
1001018
// Function definitions 20000000
int main() { 08000011
unsigned short a{42}; 4 b}'[CS for b{ 20101010
unsigned int  b{207500}; 10001100
unsigned long c{299792458};
2 bytes for a {20900600
std::cout << (a + b + c) << std::endl;
return 0;
}
— — .
J{ Integér primitiv J{ Integér primitive di

Determining the size of a type Memory and initial values

* Wehave said short, int and long are 2, 4 and 8 bytes e Question:
— This is true on most every general-purpose computer — What happens if the initial value cannot be stored?
+ Unfortunately, the C++ specification doesn’t require this #include <iostream>

— Fortunately, the sizeof operator gives you this information
#include <iostream>
int main();

int main();

int main() { int main() {
std::cout << "An 'unsigned short' occupies " unsigned short c{299792458};
<< sizeof ( unsigned short ) << " bytes" << std::endl; std::cout << "The speed of light is " << ¢
std::cout << "An 'unsigned int' occupies " << " 'm/s." << std::endl;
<< sizeof ( unsigned int ) << " bytes" << std::endl;
std::cout << "An 'unsigned long' occupies " return 0;
<< sizeof ( unsigned long ) << " bytes" << std::endl; }
return 0;
} Output on ecelinux:
An ‘'unsigned short' occupies 2 bytes
An ‘'unsigned int' occupies 4 bytes

An 'unsigned long' occupies 8 bytes
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Memory and initial values

+ Fortunately, you get a warning:
example.cpp: In function 'int main()':

example.cpp:6:31: warning: narrowing conversion of &299792458a from 'int' to
'short unsigned int' inside { } [-Wnarrowing]

unsigned short c{299792458};

A

example.cpp:6:31: warning: large integer implicitly truncated to unsigned
type [-Woverflow]

+ It still compiles and executes:
The speed of light is 30794 m/s.

Integér primitive (Lé Atypes

Memory and initial values

* Important:

All unsigned integers are stoved:
modulo 2% for unsigned short
modulo 2% for unsigned int
modulo 2% for unsigned long

Memory and initial values

*  Where does 30794 come from?

2019-11-11
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¢ requires 29 bits

00010001110111100111100001001010
_—

Only 16 bits are allocated

Memory and arithmetic

The binary number ©b111100001001010 equals 30794 in base 10

Integér primitive (l’!t Atypes,

* What happens if the sum, difference or product of two integers

exceeds what can be stored?
#include <iostream>

int main();

int main() {
unsigned short m1{40000}, m2{42000};
int  n1{40000}, n2{42000};
unsigned short sum{ml + m2}, diff{ml -

std::cout << sum << "\t" << (nl1 + n2)
std::cout << diff << "\t" << (n1 - n2)
std::cout << prod << "\t" << (n1*n2)

Output:
return 0; 16464
¥ 63536
50176

m2}, prod{ml*m2};

<< std::endl;
<< std::endl;
<< std::endl;

82000
-2000
1680000000
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Memory and arithmetic

Let’s look at the actual values and the evaluated results:

16464
82000

63536
—2000

50176
1680000000

0100000001010000
10100000001010000

1111100000110000
-0000011111010000

1100010000000000

1100100001600101100010000000000

For the sum and product, the result ignores the higher-order bits
— The negative number is a little odd....

Important:
All unsigned integers avithmetic is pevformed:
modulo 2'° for unsigned short
modulo 2% for unsigned int
modulo 2% for unsigned long

Memory and arithmetic

This is similar to all clock arithmetic being performed modulo 12

Integér primitive (Lé Atypes
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Memory and arithmetic

* What happens if the sum, difference or product of two integers
exceeds what can be stored?
#include <iostream>
int main();
int main() {
unsigned short smallest{@}, largest{65535};

std::cout << "Smallest: " << smallest << std::endl;

std::cout << "Largest: << largest << std::endl;
--smallest;
++ largest;

std::cout << "Smallest minus 1:

<< smallest << std::endl;

std::cout << "Largest plus 1: " << largest << std::endl;
return 0; Output:
} Smallest: @

Largest: 65535
Smallest minus 1: 65535
Largest plus 1: 2]

Integér primitive dii 3

Addition

« Addition is easy:
— Like in elementary school, line them up and occasionally you require
a carry in the next column:
— Therules are:
*0+0->0
c0+1-1
*+ 1+ 1> 10 > 0 withacarryof1l
©1+1+1>11 > 1 withacarryof1l
— For example, adding two unsigned short:
1o g 20950
0101000111010110 g
0 __+ 1001101011000100

1110110010011610
60570

3962
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Addition Subtraction

»  What if we go over? Adding these two unsigned short: e Subtraction is more difficult:

L - 53718 — Like in elementary school, you learned to “borrow”, but borrowing

1101000111010110 may require you to look way ahead:
39620 __+ 1001101011000100 0100000001010000
10110110010011010 «__ - 0001101011000101
93338 N

+ The additional bit is discarded—addition is calculated modulo 216 — Our salvation: we are performing arithmetic modulo 65536

— Thus, the answer is 110110010011010 which is 27802

Integér primitive dAtay

Subtraction Subtraction
. 1 o 1 e .
* Going back to the clock: * The million-dollar question:
— Subtracting 10 is the same as adding 2 10 2 How do you calculate 65536 — n???
— Subtracting 4 is the same as adding 8 9 3
— Subtracting 9 is the same as adding 3 8 4 + Subtract any number from 9999999999999, no borrows are needed
* Thus, to subtract n,add 12 —n 7 6 0 9999999999999
— 5501496383498
+ In our case, to subtract n, add 65536 —n 4498503616501
1 111 * Thus, to calculate 10000000000000 — n, instead calculate
0100000001010000 “— 16464 —> 9100000001010000 (10000000000000 — 1) — n + 1 = (9999999999999 — n) + 1
/-.0001101011000101 + 1110010100111011 «__ 55683 hisi lled the b )
6853 ? 10010010110001011 . This is called the base-10 complement
+ For example: or “10’s complement”
10000000000000 — this is how older adding machines
— The answer is 0010010110001011 «__ 9611 _ 5501496383498 performed subtraction
4498503616502
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Subtraction 2’s complement
» In binary, the equivalent is base-2 complement or “2’s complement” * To calculate the 2’s complement:
— To calculate 65536 — 1970, calculate (65535 — 1970) + 1: 1. Complement all of the bits in the number
1111111111111111 «  This includes leading zeros
- 9000011110110010 2. Add1
1111100001001101 » For example, the 2’s complement of the speed of light is stored as an
+ 1 unsigned intis
1111100001001110 00010001110111100111100001001010
» Thus, to calculate 2018 — 1970, just add the 2’s complement of 1970 11101110001000011000011110110101
to 2018: + 1
0000011111100010 11101110001000011000011110110110
+ 1111100001001110
10000000000110000

+ This is the binary representation of 48 = 25 + 24 =32 + 16
— Remember, we ignore the leading 1

» . eat N
Integer primitive data
f

2’s complement 2’s complement

+ Thereis a faster way to compute it without the addition: * The 2’s complement of @ stored as an unsigned intis
— Scan from right-to-left
»  Find the first 1, and then flip each bit to the left of that 11111111111111111111111111111111
+ 1

» The 2’s complement of each of the following is given below it
1011011111011111
0100100000100001 + This makes sense: any number minus zero is unchanged

1010111111100000
0101000000100000

0000100100101100
1111e1lel11010100
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Memory and arithmetic

2’s complement

* The 2’s complement algorithm is self-inverting: * Tryityourself:
— Ifnisanumber, then 216 — (216 —n)=n p
— The 2’s complement of the 2’s complement of a number is the

number itself
1110110010111110
0001001101000001
+ 1
0001001101000010
1110110010111101
+ 1
1110110010111110

+ Thatis,f1="forf(f(n)=n g et

Integér primitive dAtay

Summary so far Useful tool...
*  We have the following: » Note that 210 = 1024, so 21°= 1000 = 103
— Unsigned integers are stored as either 1, 2, 4 or 8 bytes — We can use this to estimate magnitudes:
— The value is stored in the binary representation e 212=22210~4x 1000 = 4000
e 216=26210~64x 1000 = 64000
Type Bytes Bits Range Approximate . 224= 24220 = 24 (210)2 = 16 x 10002 = 16 million
Range e 232=22230 = 22 (2103~ 4 x 10003 = 4 billion
unsigned char 1 8 0,..,22-1 0,...,255
unsigned short 2 16 0,...,2%-1 0,..,65535 — This approximation will underestimate by approximately 2%
unsigned int 4 32 0,..,2%-1 0,...,4.3billion
unsigned long 8 64 0,..,20-1 0,..., 18 quintillion

— You should not memorize the exact ranges
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Signed types

We've seen that short, int and long all allows you to store both
positive and negative integers
— How do we store such negative numbers?

Because we have two choices (positive or negative), we could use one
bit to represent the sign: @ for positive, 1 for negative

— For example: The sign bit
32767 ©0111111111111111
2 0000000000000010
1 0000000000000001
0 0000000000000000 -0=0, so do we

-0 1000000000000000 have two zeros?
-1 1000000000000001
-2 1000000000000010
—32768 1111111111111111

Signed types

A better solution:

Note that
—-1+1=o0,butalso11+1=0
—5+ 2 = —3, but also 7 + 2 = 9, which we are equating to —3

Signed types

» This is similar to marking the hours of a clock as follows:

» Unfortunately, this leads to ugly arithmetic operations...
—-1+1=o00r -0, but7+1=8
—5+2=-3, buti1+2=1

Integér primitive dAtay

Signed integers

+ Here is a workable solution:
— Ifthe leading bit is @:
+ Assume the remainder of the number is the integer represented
» For short, this includes
0000000000000000 0
0111111111111111 2151 =32767
« This includes 215 different positive numbers
— Ifthe leading bit is 1:

+ Assume the number is negative and its magnitude can be found by
applying the 2’s complement algorithm

 Recall the 2’s complement algorithm is self-inverting

2019-11-11
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Signed integers

+ For negative numbers stored as a short:
1000000000000000
0111111111111111
+ 1
1000000000000000
— This is the representation of the largest negative number: —215

1111111111111111
©000000000000000
+_ 0000001
0000000000000001
— This is the representation of the smallest negative number: -1

Signed integers

+ Forexample, 1111111111010110 is a negative short
1111111111010110
0000000000101001
1
0000000000101010
» Thus, it represents —42
* Let’s calculate -42 + 91 =49 and —42 - 91 = -133:
1111111111010110
+ 0000000001011011
10000000000110001 ~49

1111111111010110 —91

+ 1111111110100101 — 133
41111111101111011 ~—_133 10000101

2019-11-11
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Signed integers

* Here, you can compare these two techniques
— Inboth cases, we go from ~12/2 to 12/2 — 1 and —216/2 to 216/2 - 1

P
1 L L I ]
o 32333
1 1 102 3 eeeeens £523
2
10 22%.% 222
2% % AN
2%% EAAAY
39 2532 % FACAAY
208 . ... EACANE
e AR
S 200
8 PRRR B AT
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R AN NS
5 22%%% FACATAY
6 AN EACANS
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(9-?\9\)9\) A
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Summary

* To summarize:
— Integer types are stored as either 1, 2, 4 or 8 bytes
— Negative numbers are stored in the 2’s complement representation

Type Bytes Bits Range App;;):gl:ate
unsigned char 1 8 0,..,28 -1 0,...,255
unsigned short 2 16 0,..,216-1 0,...,65535
unsigned int 4 32 0,..,2%-1 0, ..., 4.3 billion
unsigned long 8 64 0,..,20-1 0, ..., 18 quintillion
signed char 1 8 -27,...,27-1 -128, ..., 127
short 2 16 =215 ,,.,215-1 —32768, ...,32767
int 4 32 —2%1,,..,2% 1 —2.15 billion, ..., 2.15 billion
long 8 64 263 .., 26831 -9 quintillion, ..., 9 quintillion

11
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Warning

While common, the C++ standard does not require these sizes:

— Each compiler may choose sizes so long as the following are true:
assert( sizeof( char ) ==1);
assert( sizeof( short ) >= 2 ); // At least 16 bits
assert( sizeof( int ) >= sizeof( short ) );

// At least as large as 'short'

assert( sizeof( long ) >= 4 ); // At least 32 bits
assert( sizeof( long long ) >= 8 ); // At least 64 bits

In GNU g++, the sizes are as we have described in this slide deck
In Microsoft Visual Studio, however:
— A long is only four bytes (same as int)

— Along longis eight bytes
— We do not use long long in this course
* You may have to use it if you program in Visual Studio
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Summary

» Following this lesson, you now
— Understand the representation of unsigned integers
— Know how to perform subtraction using 2’s complement
« Similar to 10’s complement used a century ago
Understand that signed integers store negative numbers in their
2’s complement representation
— Know that char is actually just an integer type
« It can be interpreted as a printable character if necessary
— Understand the ranges stored by char, short, int and long

Integér primitive dAtay
e
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Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see
https://www.rbg.ca/
for more information.
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Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

2019-11-11

13



